HJ-2387
M. A. (Mathematics) (Part - II) (External) Examination May/June - 2018
501 - Differential Geometry \& Linear Algebra
Time : 3 Hours]
[Total Marks : 100

Instructions :

(1)

(2) All questions are compulsory.
(3) Notations used are standard.
(4) Each question is of 20 marks.

1 (a) Let M be a subspace of R^{3} described by $x_{1}-x_{2}-x_{3}=0$. Find projection of $\mathrm{f}=(2,3,2)$ on M by taking the standard inner product.
(b) Given $\mathrm{f}=(2,-2,-2,6)^{T}$ Find a vector S , obtained as a linear
combination of vectors $v_{1}=(1,1,1,1)^{T}, v_{2}=(1,-1,0,0)^{T}$ and $v_{3}=(1,1,0,-2)^{T}$ such that $\|f-s\|$ is minimal.
(c) If $\mathrm{M}=\operatorname{span}\left\{A_{1}, A_{2}\right\}$ where $A_{1}=(1,1,1,-1)^{T}$ and $A_{2}=(-1,2,2,1)^{T}$ then find basis of M^{\perp}.

OR

1 (a) Define: Null space and Range of a linear operator. Prove that the null space and range of a linear operator are subspaces of norm space v and w respectively.
(b) Let $A=\left[A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right]$. Let $<,>$ be the standard inner product 7 on F^{m} then thefollowing statement are equivalent
I) $\quad S=A x$ is projection of y on M.
II) $Z=\mathrm{x}$ minimizes $\|y-A z\|$ where $z \in F^{n}$.
III) X satisfies the normal equations $A^{H} x=A^{H} y$.
(c) Define: Norm and Inner product space. Let $T: V \rightarrow W$ be a linear operator and $\operatorname{dim}(\mathrm{v})=\mathrm{n}$ and $\operatorname{dim}(\mathrm{w})=\mathrm{m}$. If T is invertible then prove that $\mathrm{m}=\mathrm{n}$.

2 (a) Let $T(x)=x^{\prime \prime}+2 x^{\prime}+x$, Find the matrix of T with respect to basis 7 $p=\left\{1, t, t^{2}\right\}$. Find $\mathrm{N}(\mathrm{T}), \mathrm{R}(\mathrm{T})$ and solve $T(x)=1+t+t^{2}$.
(b) Let $T: p_{2} \rightarrow R^{3}$ be defined by $\mathrm{T}(\mathrm{f})=\mathrm{X}\left(X_{0}, X_{1}, X_{2}\right)^{T}$ where $x_{k}=\int_{0}^{K+1} f(t) d t ; K=0,1,2$ then find $f(t)$.
(c) (a) Let A be an $\mathrm{m} \times \mathrm{n}$ matrix and if $<,>$ is the standard inner product on F^{m}. Then prove that
(1) $N(A)=R\left(A^{H}\right)^{\perp}$
(2) $R(A)=N\left(A^{H}\right)^{\perp}$
(3) $r(A)=r\left(A^{H}\right)$

OR

2 (a) Let $T: v \rightarrow v$ be a linear operator, $\beta=\left\{e_{k}\right\}$ and $y=\left\{f_{k}\right\}$ where $\mathrm{k}=1 \ldots \mathrm{n}$ be two bases for v. Let the change of basis from β to γ result in some matrix $\mathrm{p}=\left[p_{i j}\right]$ then prove that $[T]_{\gamma}=p^{-1}[T]_{\beta} p$.
(b) If T be a matrix operator $\mathrm{T}(\mathrm{X})=\mathrm{AX}$ with $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ -1 & 3 & -1 \\ -2 & 2 & 6\end{array}\right]$. (c) ${ }^{7}$

Find a basis for $N(T)$ and its dimension. Also find $\operatorname{rank}(T)$. Is T one to one? Onto? Justify.
(c) If $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is an orthogonal set and x, y are in span $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ so that $x=\sum_{i=1}^{n} x_{i} e_{i}$ and $y=\sum_{i=1}^{n} y_{i} e_{i}$ for some x_{i} and y_{i}. Then prove that

1. The coefficients x_{i} is uniquely given by $x_{i}=\frac{\left\langle x, e_{i}\right\rangle}{\left\|e^{\prime}\right\|^{2}}$
2. $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{t}\left\|e_{i}\right\|^{2}$

3 (a) Define: Torsion and Screw-Curvature. A necessary and sufficient 7 condition that a given curve is plane curve is that $\tau=0$ at all points.
(b) Derive equation to determine principal curvature at every point 7 of the space curve.
(c) Derive formula for curvature and Torsion in Dot notations.

OR

3 (a) State and prove Frenet-Serret formula.
(b) The necessary and sufficient condition for a curve to be a helix is 7 that its curvature bears a constant ratio with it torsion at any point.
(c) For the curve $\mathrm{X}=3 \mathrm{t}, \mathrm{Y}=3 t^{2}, \mathrm{Z}=2 t^{3}$. 6 Show that $\rho=\sigma=\frac{3}{2}\left(1+2 t^{2}\right)^{2}$.

4 (a) Define: Osculating circle. Find the radius and centre of osculating circle.
(b) Prove that envelop of family of surfaces touches every member of the family at all points of its characteristics.
(c) Find the envelop of the sphere $(X-a \cos \theta)^{2}+(Y-a \sin \theta)^{2}+Z^{2}=b^{2}$.

OR

4 (a) Define: Polar developable. Prove that edge of regression of polar developable is the centre of spherical curvature.
(b) Prove that $\mathrm{XY}=\left(Z-t^{2}\right)^{2}$ is developable. But the surface $x y z=a^{3} \quad 7$ is not developable.
(c) Define: Involutes.

Find the equation of curvature and torsion for involutes.

5 (a) State and prove QR factorization Theorem
7
(b) Define $T: R^{3} \rightarrow R^{3}, \mathrm{~T}(\mathrm{X})=2\left(X^{T} e_{1}\right) e_{1-}\left(X^{T} e_{2}\right) e_{2}+\left(X^{T} e_{3}\right) e_{3}$ 7 where $e_{1}=(0,1,0)^{T} ; e_{2}=(1,0,1)^{T} ; e_{3}=(1,2,1)^{T}$.
(i)Find matrix of T with respect to standard basis.
(ii) Find matrix of inverse of T if exists.
(c) Prove that the range and subspace of a linear operator $T: V \rightarrow W$ are the subspaces of V and W, respectivey.

OR

5 (a) Show that principal normal of one curve be Binormal of another curve if the relation $\mathrm{a}\left(k^{2}+\tau^{2}\right)=b k$ must hold where a and b are constants.
(b) If θ is the angle between direction curves $p d u^{2}+2 Q d u d v+R d v^{2}=0$ at any point (u, v) then prove that $\tan (\theta)=\frac{2 H\left(Q^{2}-P R\right)^{\frac{1}{2}}}{E R-2 F Q+G P}$
(c) Define: Developable surface. Find the condition for the surface to be developable.

